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Abstract

This work presents a new Krylov-subspace-recycling method for efficiently solving sequences of linear
systems of equations characterized by a non-invariant symmetric-positive-definite matrix. As opposed to
typical truncation strategies used in recycling such as deflation, we propose a truncation method inspired
by goal-oriented proper orthogonal decomposition (POD) from model reduction. This idea is based on the
observation that model reduction aims to compute a low-dimensional subspace that contains an accurate
solution; as such, we expect the proposed method to generate a low-dimensional subspace that is well
suited for computing inexact solutions. In particular, we propose specific goal-oriented POD ‘ingredients’
that align the optimality properties of POD with the objective of Krylov-subspace recycling. To compute
solutions in the resulting ‘augmented’ POD subspace, we propose a hybrid direct/iterative three-stage
iterative method that leverages (1) the optimal ordering of POD basis vectors, and (2) well-conditioned
reduced matrices. Numerical experiments performed on real-world solid-mechanics problems highlight
the benefits of the proposed method over standard approaches for Krylov-subspace recycling.

1 Introduction

This work considers solving a sequence of linear systems of equations characterized by a non-invariant
symmetric-positive-definite matrix. Such problems arise in a variety of engineering and science ap-
plications, including structural optimization, nonlinear structural dynamics, unconstrained numerical
optimization, and nonlinear electromagnetics. In particular, we consider solving these linear systems to
inexact tolerances using the (preconditioned) conjugate-gradient method; further, we allow for a solution-
dependent output to serve as a quantity of interest.

While each linear-system solve can be executed independently of previous solves, reusing data gener-
ated during these solves can lead to improved convergence; this observation has led to the emergence of
Krylov-subspace recycling methods. These recycling methods can also be considered ‘augmented Krylov
subspace methods’ [23] because they ‘augment’ the typical Krylov subspace with a subspace computed
from previous data, and subsequently project the linear system onto this augmented subspace. First,
researchers developed methods that employ the space spanned by all Krylov vectors generated during
the solution of previous linear systems as the augmenting subspace. In this framework, researchers de-
veloped block Krylov [16] and successive right-hand side [22, 11, 9] methods to treat multiple right-hand
sides with an invariant matrix; the successive right-hand side case occurs, for example, when restarting
Krylov-subspace methods. These ideas were also extended to solve multiple systems with non-invariant
matrices; approximate orthogonalization techniques [18, 21], projection methods [10, 12], and an efficient
full orthogonalization method [20] were developed for this purpose.

However, retaining the accumulation of the all previous Krylov vectors can be computationally expen-
sive and memory intensive, particularly when convergence is slow, the number of previous linear systems
is large, or the preconditioner is not based on domain decomposition. This has led to the development
of truncation methods that retain a subset of the previous Krylov vectors as a basis for the augmenting
subspace. First, deflation techniques for sequences of systems with invariant [5, 25] and non-invariant
[19, 17] matrices were developed. These methods employ approximated eigenvectors associated with the
smallest eigenvalues of the governing matrices as the augmenting subspace Y. As such, they are effective
primarily in cases where convergence is hampered by a few small eigenvalues. An alternative approach
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computes the augmenting subspace Y as the subspace that most accurately represents the Krylov sub-
space in the orthogonalization step of the generalized conjugate residual (GCR) method; this was also
developed fr both the invariant [6] and non-invariant [17] cases.

These truncated Krylov-subspace-recycling techniques do not target the efficient solution of inexact
solutions, which is the focus of this work. To this end, we propose a new proper orthogonal decompo-
sition (POD)-augmented conjugate-gradient algorithm for (truncated) Krylov-subspace recycling. This
approach—which is employs goal-oriented model reduction to truncate previous Krylov vectors—is in-
spired by the observation that model-reduction techniques aim to generate low-dimensional approxima-
tions that preserve high levels of accuracy (i.e., satisfy inexact tolerances); it is based on preliminary
work presented in Ref. [3]. The paper consists of the following new contributions:

1. Analyses that expose the close relationship between goal-oriented POD and Krylov-subspace recy-
cling (Theorems 1–3 and Corollary 1).

2. Goal-oriented POD ingredients for truncating previous Krylov vectors, including

• Snapshots comprising all previous Krylov vectors,

• Metrics induced by (1) the system matrix and (2) the output quantity of interest, and

• Weights arising from (1) the linear system before truncation and (2) a radial-basis-function
approximation of the solution.

3. A novel ‘three-stage’ algorithm, which accelerates the solution over the augmenting space using a
hybrid direct/iterative approach. The algorithm leverages (1) the optimal ordering of POD basis
vectors and (2) well-conditioned reduced matrices. The algorithm comprises

• Stage 1 : Direct solution over the first few (high-energy) POD basis vectors,

• Stage 2 : Iterative solution over the full augmenting space using the augmented CG algorithm,
and

• Stage 3 : Iterative solution over the full space using the augmented preconditioned CG algo-
rithm. This stage is equipped with new strategies for efficiently orthogonalizing against the
entire augmenting subspace.

Section 2 provides the problem formulation, Section 3 describes the proposed POD-augmented conjugate-
gradient algorithm, Section 4 describes the three-stage algorithm, Section 5 provides numerical exper-
iments, and Section 6 concludes the paper. In the remainder of this paper, we denote matrices by
capitalized bold letters, vectors by lowercase bold letters, and scalars by lowercase letters. We denote the
columns of a matrix A ∈ Rm×n by ai ∈ Rm, i ∈ N(n) with N(a) := {1, . . . , a} such that A := [a1 · · · an].
We denote the scalar-valued matrix elements by aij ∈ R such that aj ≡ [a1j · · · amj ]

T , j ∈ N(n). In ad-
dition, we denote the range of a matrix by its calligraphic counterpart, i.e., range(A) ≡ A; we sometimes
refer to A as the ‘basis’ for A, although—more precisely—it is the ‘basis in matrix form’.

2 Problem formulation

This work considers solving a sequence of linear systems with a non-invariant matrix

Ajx
?
j = bj , j = 1, . . . , p. (1)

Here, Aj ∈ SPD(n) and bj ∈ Rn denote the jth sparse system matrix and right-hand side, respectively,
with SPD(n) denoting the set of symmetric-positive-definite (SPD) n × n matrices. The quantities
x?
j ∈ Rn are implicitly defined as the (exact) solutions to Eqs. (1). Further, we assume that the primary

objective is to compute an output quantity of interest z (xj), j = 1, . . . , p with

z :Rn → Rq (2)

x 7→ Cx, (3)

where C ∈ Rq×n.
We consider computing a sequence of inexact solutions xj , j = 1, . . . , p to Eqs. (1) that satisfy

‖bj −Ajxj‖2 ≤ εj , j = 1, . . . , p. (4)

where εj ≥ 0, j = 1, . . . , p denotes the forcing sequence [8]. To compute each inexact solution, we
consider applying the preconditioned conjugate gradient (PCG) algorithm, which computes a sequence
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of solutions that minimize the energy norm of the error over the (current) Krylov subspace. For the jth
linear system, these solutions satisfy

x
(k)
j = arg min

x∈x
(0)
j +K

(k)
j (x

(0)
j )

∥∥x?
j − x

∥∥
Aj
, k = 1, . . . , kj , (5)

where K
(k)
j : x 7→ K(k)

(
M−1

j Aj ,M
−1
j (bj −Ajx)

)
⊆ Rn is the affine search subspace, K(k) : (A,b) 7→

span{b,Ab, . . . ,Ak−1b} ⊆ Rn is the Krylov subspace at iteration k, Mj ∈ SPD(n) is a preconditioner,

x
(0)
j ∈ Rn is the initial solution, (x,y)Aj

:= xTAjy and ‖x‖Aj
:=
√

(x,x)Aj
denote the Aj-weighted

inner product and norm, and kj denotes the number of iterations required such that xj := x
(kj)

j satisfies
inequality (4).

Note that Eqs. (5) can be equivalently expressed [24] as a projection

x
(k)
j = P

K
(k)
j

Aj

(
x?
j

)
, k = 1, . . . , kj , (6)

where PK
A (x) denotes the A-orthogonal projection of the vector x ∈ Rn onto the (affine) subspace

K ⊆ Rn, i.e., PK
A (x) ∈ K, ∀x ∈ Rn;

(
x−PK

A (x) , z
)
A

= 0, ∀x ∈ Rn, ∀z ∈ K; and PK
A

(
PK

A (x)
)

=

PK
A (x) (idempotency). Given a basis V ∈ Rn×y and centering point x̄ ∈ Rn for the subspace such that

K := x̄ + V (recall that V ≡ range(V)), the projector can be defined algebraically as

PK
A : x 7→ x̄ + V

(
VTAV

)−1

VTA(x− x̄). (7)

If a symmetric factorization A = (A1/2)TA1/2 is available (where A1/2 need not be upper triangular),
then an equivalent definition is

PK
A : x 7→ x̄ + V

(
A1/2V

)+

A1/2(x− x̄). (8)

where a superscript + denotes the Moore–Penrose pseudoinverse.
Substituting definition (7) in Eq. (6) and using Eq. (1) as well as the definition of K

(k)
j reveals that

the solution x
(k)
j can be computed from a Galerkin projection process

V
(k)T
j AjV

(k)
j x̂

(k)
j = V

(k)T
j r

(0)
j , (9)

x
(k)
j = x

(0)
j + V

(k)
j x̂

(k)
j , k = 1, . . . , kj (10)

where V
(k)
j ∈ Rn×k

? constitutes a basis for the subspaceK(k)
(
M−1

j Aj ,M
−1
j r

(0)
j

)
such that range(V

(k)
j ) =

K(k)
(
M−1

j Aj ,M
−1
j r

(0)
j

)
and r

(0)
j := bj −Ajx

(0)
j ∈ Rn is the initial residual. Here, Rm×n

? denotes the

noncompact Stiefel manifold: the set of full-column-rank m× n matrices.

2.1 Augmented conjugate-gradient method

Krylov-subspace recycling aims to reduce the computational burden of solving linear system j of Eqs. (1)
by exploiting a previously computed ‘augmenting’ subspace Yj ⊆ Rn of dimension yj ≤ n spanned by

a basis Yj ∈ Rn×yj
? . To achieve this, recycling strategies employ augmented Krylov-subspace methods;

rather than perform the typical sequence of Krylov iterations (e.g., Eqs. (5)), these methods first compute
a solution in the augmenting subspace, and then compute an increment in a newly generated Krylov
subspace. Critically, these methods ensure that the final solution minimizes the error over the sum
of augmenting and Krylov subspaces; this generally requires maintaining orthogonality of new Krylov
vectors (or Aj-orthogonality of new search directions) to the augmenting subspace.

In the context of the conjugate-gradient method, these methods first solve a minimization problem
in the affine subspace x̄j + Yj , where x̄j is an initial guess:

x
Yj
j = arg min

x∈x̄j+Yj

∥∥x?
j − x

∥∥
Aj
. (11)

As before, the solution can be expressed as an orthogonal projection

x
Yj
j = x̄j + Yj ŷj = P

x̄j+Yj
Aj

(
x?
j

)
, (12)
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where ŷj satisfies

YT
j AjYj ŷj = YT

j (bj −Aj x̄j) . (13)

Subsequently, these methods solve a minimization problem in the ‘augmented’ Krylov subspace

x
(k)
j = arg min

x∈x̄j+Yj+K
(k)
j (x

Yj
j )

∥∥x?
j − x

∥∥
Aj
, k = 1, . . . , kj . (14)

The final solution can then be expressed as

xj = x̄j + Yj ŷj + Vj v̂j = P
x̄j+Yj+Vj
Aj

(
x?
j

)
, (15)

where Vj := V
(kj)

j denotes a basis that satisfies Yj + Vj = Yj +K(k)
(
M−1

j Aj ,M
−1
j

(
bj −Ajx

Yj
j

))
.

The solution increment Vj v̂j in Eq. (15) can be computed via Algorithm 1 as

(kj , v̂j ,Vj ,Γj) = augmented pcg(Aj ,bj −Aj x̄j , ŷj ,Yj ,Mj , εj).

This algorithm is a general augmented preconditioned CG algorithm, where steps 4–5, and 13–14 account
for the augmenting subspace by ensuring all search directions remain A-orthogonal to the augmenting
subspace. Important properties of this algorithm include

VTAV = Γ, YTAV = 0, (16)

Y + V = Y +K(k)
(
M−1A,M−1

(
b−AYx̂(0)

))
(17)

Furthermore, if Yx̂(0) = P
x̄j+Y
A (x?), then

Yx̂(0) + Vv̂ = PY+V
A (x?) , (18)

where Ax? = b.

Algorithm 1 augmented pcg

Input: A, b, x̂(0), Y, M, ε
Output: k, v̂, V, Γ
1: x(0) = Yx̂(0)

2: r(0) = b−Ax(0)

3: z(0) = M−1r(0)

4: Solve YTAYµ(0) = YTAz(0).
5: p(0) = z(0) −Yµ(0)

6: for k = 0, 1, . . . do
7: γ(k) = (Ap(k),p(k))
8: α(k) = (r(k), z(k))/γ(k)

9: x(k+1) = x(k) + α(k)p(k)

10: r(k+1) = r(k) − α(k)Ap(k)

11: z(k+1) = M−1r(k+1)

12: β(k+1) = (r(k+1),z(k+1))

(r(k),z(k))

13: Solve YTAYµ(k+1) = YTAz(k+1).
14: p(k+1) = z(k+1) + β(k+1)p(k) −Yµ(k+1)

15: if ‖r(k+1)‖ ≤ ε then
16: Exit.
17: end if
18: end for

19: k = k + 1, v̂ =
[
α(0) · · · α(k−1)

]T
, V =

[
p(0) · · · p(k−1)

]
, Γ = diag(γ(0), . . . , γ(k−1))

Several strategies exist to obtain the augmenting matrix Yj . Typically, the columns of this matrix
consist of all Krylov vectors generated for previous linear systems; this provides the interpretation of
‘recycling’ Krylov subspaces. In this case, we have

Yj = [V1 · · · Vj−1] . (19)
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However, after a modest number of linear systems has been solved, it becomes memory- and computation-
intensive to retain and orthogonalize against this complete set of Krylov vectors. Therefore, several
techniques have been devised to truncate these vectors to preserve the subspace that is ‘most important’
in some sense. In particular, these methods compute Yj+1 such that Yj+1 ⊆ Zj , where Zj := [Yj Vj ] ∈
Rn×zj denotes the matrix of all preserved vectors accumulated over the first j linear solves, with zj =
yj + kj . Note that Zj−1 = [V1 · · · Vj−1] before truncation first occurs.

2.2 Deflation with harmonic Ritz vectors

Deflation techniques aim to retain the subspace associated with eigenvectors that tend to hamper con-
vergence, i.e., those with eigenvalues close to zero. Such techniques have been developed for multiple
linear systems with an invariant (e.g., restarting) [5, 25] and non-invariant [19, 17] matrix.

To accomplish this, these techniques compute the harmonic Ritz vectors—which approximate the
smallest eigenvalues of Aj—by solving the following problem: Find ȳi ∈ range(Aj−1Zj−1) and λi ∈ R,
i = 1, . . . , yj with yj ≤ zj−1 such that(

w,A−1
j−1ȳi − ȳiλi

)
= 0, ∀w ∈ range(Aj−1Zj−1). (20)

An equivalent problem statement is the following: Find yi ∈ Zj−1 and θi ∈ R, i = 1, . . . , yj with
yj ≤ zj−1 such that

(w,Aj−1yi − yiθi) = 0, ∀w ∈ range(Aj−1Zj−1), (21)

where θi = λ−1
i and ȳi = Aj−1yi, i = 1, . . . , yj+1. Because vector yi is equivalent to eigenvector ȳi with

one step of inverse iteration, vectors yi are typically employed for recycling [15].
Algebraically, this corresponds to solving the generalized eigenvalue problem

ZT
j−1A

T
j−1Aj−1Zj−1G = ZT

j−1AjZj−1GΛ−1 (22)

with Λ = diag(λi) and subsequently setting Yj ←
[
Zj−1g1 · · · Zj−1gyj

]
, where the eigenvalues λi are

ordered in decreasing magnitude.
This approach has been pursued in the context of GMRES with deflated restarting (GMRES-DR

[5, 19, 20, 14]), GCR with orthogonalization and deflated restarting (GCRO-DR) [17], and the deflated
conjugate gradient method [5]. Deflation is effective primarily in cases where the matrix is characterized
by a small number of eigenvalues close to zero that hamper convergence. Further, because this approach
aims to promote convergence (to the ‘exact’ solution), it is not tailored for the efficient computation of
inexact solutions, which is the focus of this work. To this end, we propose a novel truncation strategy
inspired by model reduction.

3 POD-augmented CG

Because this work focuses on efficiently computing inexact solutions, we aim to compute an ‘ideal’ low-
dimensional subspace Y?

j that directly minimizes the error in the augmenting-subspace solution appearing
in Eq. (11), i.e.,

Y?
j = arg min

Y∈G(yj ,n)

∥∥∥x?
j −P

x̄j+Yj
Aj

(
x?
j

)∥∥∥
Aj

, (23)

where G (m,n) denotes the set of m-dimensional subspaces of Rn (the Grassmannian). Alternatively, we
may be interested in computing inexact solutions that most accurately represent output quantities of
interest. In this case, we can also consider an ideal output-oriented subspace

Ȳ?
j = arg min

Y∈G(yj ,n)
‖z
(
x?
j

)
− z

(
P

x̄j+Yj
Aj

(
x?
j

))
‖2. (24)

Clearly, these ideal subspaces are computable if the exact solution x?
j is known; in this case, we can

enforce x?
j − x̄j ∈ Y?

j (resp. x?
j − x̄j ∈ Ȳ?

j )—which yields
∥∥∥x?

j − x
Y?
j

j

∥∥∥
Aj

= ‖z
(
x?
j

)
− z

(
x
Y?
j

j

)
‖2 = 0—

for any yj ≥ 1 (if yj = 1, then Y?
j = span{x?

j − x̄j}). However, the exact solution x?
j is not known

before the jth linear system is solved. In this case, we aim to compute a subspace that approximately
solves minimization problem (23). For this purpose, we employ goal-oriented POD with carefully chosen
snapshots, weights, and metrics [2, 4].
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3.1 POD

The POD method generates a basis that optimally represents a set of vectors (or ‘snapshots’) in a certain
sense. We aim to select goal-oriented POD ingredients (i.e., snapshots, weights, and metric) that align
the POD optimality property with the objective function in Eq. (23).

Given a matrix whose columns represent s snapshots W ∈ Rn×s, a vector of weights γ ∈ Rs, and
pseudometric associated with matrix Θ ∈ SPSD(n), where SPSD(n) denotes the set of n×n symmetric-
positive-semidefinite matrices, the POD method computes a subspace of dimension y ≤ s that minimizes
the sum of squared projection errors, i.e.,

UΘ
y (W,γ) = arg min

A∈G(y,n)

s∑
i=1

‖
(
I−PAΘ

)
(γiwi) ‖2Θ, y = 1, . . . , s. (25)

Appendix A describes two standard algorithms for computing a basis for this POD subspace UΘ
y (W,γ) ∈

Rn×y satisfying range(UΘ
y (W,γ)) = UΘ

y (W,γ). The basis is nested

UΘ
i+1 = [UΘ

i uΘ
i+1], i = 1, . . . , s− 1 (26)

with uΘ
i ∈ Rn, i = 1, . . . , s and UΘ

1 = uΘ
1 and it exhibits Θ-orthogonality, i.e.,(

uΘ
i ,u

Θ
j

)
Θ

= δij , (27)

where δij denotes the Kronecker delta. We note that the algebraic definition (7) is not valid when
considering pseudometrics, as VTΘV may not be invertible if Θ is semidefinite. In this case, definition
(8) is appropriate, as Θ1/2V always has a pseudoinverse.

Remark 1 (Optimal ordering of POD vectors). Note that Eqs. (25)–(26) imply that the POD basis
vectors are optimally ordered, i.e., the first y POD basis vectors span the optimal y-dimensional subspace
in the sense of Eq. (25).

3.2 POD and the augmented conjugate gradient method

We propose employing goal-oriented POD to define the augmenting subspace, i.e.,

Yj = UΘ
y (W,γ) (28)

for specific choices of the snapshots W, weights γ, and metric Θ. The following results provide guidance

toward this end. We first show that POD is related to minimizing
∥∥∥x?

j − x
Yj
j

∥∥∥
Aj

, which is the error

minimized by ideal subspace Y?
j in problem (23).

Theorem 1. The POD subspace UAj
y

(
Zj−1,η

?
j

)
with

η?
j :=

(
ZT

j−1AjZj−1

)−1

ZT
j−1 (bj −Aj x̄j) (29)

minimizes an upper bound for
∥∥∥x?

j −P
x̄j+Yj
Aj

(
x?
j

)∥∥∥
Aj

over all y-dimensional subspaces of Zj−1 ⊆ Rn,

where y ≤ zj−1 ≤ n.

Proof. We begin by decomposing the centered exact solution as x?
j − x̄j = x

‖
j + x⊥j , where x

‖
j =

P
Zj−1

Aj

(
x?
j − x̄j

)
= Zj−1η

?
j (from Eqs. (1) and (7)) and x⊥j =

(
I−P

Zj−1

Aj

) (
x?
j − x̄j

)
. We can then

bound the error as∥∥∥x?
j −P

x̄j+Yj
Aj

(
x?
j

)∥∥∥
Aj

=
∥∥∥x?

j − x̄j −P
Yj
Aj

(
x?
j − x̄j

)∥∥∥
Aj

=
∥∥∥x‖j + x⊥j −P

Yj
Aj

(
x
‖
j

)∥∥∥
Aj

(30)

=
∥∥∥(I−P

Yj
Aj

) (
Zj−1η

?
j

)∥∥∥
Aj

+
∥∥∥x⊥j ∥∥∥

Aj

(31)

≤ z1/2
j−1

√√√√zj−1∑
i=1

∥∥∥(I−P
Yj
Aj

)
(η?i zi)

∥∥∥2

Aj

+
∥∥∥x⊥j ∥∥∥

Aj︸ ︷︷ ︸
(I)

,

(32)
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where we have used P
Yj
Aj

(
x⊥j
)

= 0 (because P
Zj−1

Aj

(
x⊥j
)

= 0 and Yj ⊆ Zj−1), the triangle inquality,

and the norm-equivalence relation ‖x‖1 ≤ n1/2‖x‖2. By comparing Eqs. (25) and (32), using mono-
tinicity of the square root function, and noting that term (I) is independent of the subspace Yj , it is
clear that the POD subspace minimizes (over all y-dimensional subspaces of Zj−1) an upper bound for∥∥∥x?

j −P
x̄j+Yj
Aj

(
x?
j

)∥∥∥
Aj

if Θ = Aj , wi = zi and γi = η?i for i = 1, . . . , s with s = zj−1.

We now show that other ingredients can be selected to align POD with minimizing ‖z
(
x?
j

)
−

z
(
P

x̄j+Yj
Aj

(
x?
j

))
‖2, which is the error minimized by ideal subspace Ȳ?

j in problem (24).

Theorem 2. The POD subspace UCT C
y

(
Zj−1, η̄

?
j

)
with

η̄?
j := (CZj−1)+ C

(
x?
j − x̄j

)
(33)

minimizes an upper bound for the output error ‖z
(
x?
j

)
− z

(
P

x̄j+Yj
Aj

(
x?
j

))
‖2 over all y-dimensional

subspaces of Zj−1 ⊆ Rn, where y ≤ zj−1 ≤ n.

Proof. We again decompose the centered exact solution x?
j − x̄j according to

x?
j − x̄j = xC

j + xC⊥
j = xj

‖ + xj
⊥ + xC⊥

j . (34)

Here, xC
j = P

range(CT )
I

(
x?
j − x̄j

)
, xC⊥

j =
(
I−P

range(CT )
I

) (
x?
j − x̄j

)
, xj

‖ = P
Zj−1

CT C

(
xC
j

)
= Zj−1η̄

?
j

(from Eq. (8)), and xj
⊥ =

(
I−P

Zj−1

CT C

) (
xC
j

)
. We can then bound the error as

‖z
(
x?
j

)
− z

(
P

x̄j+Yj
Aj

(
x?
j

))
‖2 = ‖C(x?

j − x̄j)−C(P
Yj
Aj

(
x?
j − x̄j

)
)‖2 =

∥∥∥x?
j − x̄j −P

Yj
Aj

(
x?
j − x̄j

)∥∥∥
CT C

(35)

≤
∥∥∥x?

j − x̄j −P
Yj
CT C

(
x?
j − x̄j

)∥∥∥
CT C

+
∥∥∥(P

Yj
Aj
−P

Yj
CT C

)(x?
j − x̄j)

∥∥∥
CT C

(36)

≤
∥∥∥x?

j − x̄j −P
Yj
CT C

(
x?
j − x̄j

)∥∥∥
CT C

+
∥∥∥PYjAj

−P
Yj
CT C

∥∥∥
CT C

∥∥x?
j − x̄j

∥∥
CT C

(37)

=
∥∥∥xj

‖ + xj
⊥ −P

Yj
CT C

(
xj
‖
)∥∥∥

CT C
+
∥∥∥PYjAj

−P
Yj
CT C

∥∥∥
CT C

∥∥∥xj
‖ + xj

⊥
∥∥∥

CT C

(38)

=
∥∥∥(I−P

Yj
CT C

)(
xj
‖
)∥∥∥

CT C
+
∥∥∥xj

⊥
∥∥∥

CT C
+
∥∥∥PYjAj

−P
Yj
CT C

∥∥∥
CT C

∥∥∥xj
‖ + xj

⊥
∥∥∥

CT C

(39)

≤ z1/2
j−1

√√√√zj−1∑
i=1

∥∥∥(I−P
Yj
CT C

) (
[η̄?

j ]izi

)∥∥∥2

CT C
+
∥∥∥xj

⊥
∥∥∥

CT C
+ α

∥∥Zj−1η̄
?
j

∥∥
CT C︸ ︷︷ ︸

(I)

(40)

Here, we have used CxC⊥
j = 0 and P

Yj
CT C

(
xj
⊥
)

= 0. Also, ‖A‖CT C = supx6=0 ‖Ax‖CT C / ‖x‖CT C

with A ∈ Rn×n is an induced matrix norm and α := supY∈G(y,n)

∥∥∥PYAj
−PY

CT C

∥∥∥
CT C

. Within inequality

(40), term (I) is independent of the subspace Y; as such, a comparison of Eqs. (25) and (40) reveals that

the POD subspace minimizes (over all subspaces Y) an upper bound for ‖z
(
x?
j

)
− z

(
P

x̄j+Yj
Aj

(
x?
j

))
‖2 if

Θ = CTC, wi = zi and γi = [η̄?
j ]i for i = 1, . . . , s with s = zj−1 under the stated assumptions.

3.3 Goal-oriented POD ingredients

In light of these theoretical results, we now propose several practical choices for POD ingredients that
align goal-oriented POD with augmented CG.
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3.3.1 Snapshots

Theorems 1 and 2 show that POD minimizes an upper bound for errors of interest if snapshots are set
to vectors accumulated over the first j − 1 linear solves. We therefore employ W = Zj−1 in Eq. (28).

3.3.2 Weights

In practice, the augmenting subspace Yj is computed after linear system j − 1 is solved. As such, we
cannot compute the ‘ideal weights’ η̄?

j defined in (33), which requires knowledge of x?
j . While η?

j in

Eq. (29) can be computed by solving ZT
j−1AjZj−1η

?
j = ZT

j−1 (bj −Aj x̄j), this is not practical: the
computational cost of doing so is equivalent to solving Eqs. (13) with Yj = Zj−1, i.e., employing an
augmenting subspace that has not been truncated. As such, we consider two approximations to these
ideal weights.

1. Previous weights. This approach employs weights of

ηprev
j =

(
ZT

j−1Aj−1Zj−1

)−1

ZT
j−1 (bj−1 −Aj−1x̄j−1) . (41)

Comparing Eqs. (29) and (41) reveals that ηprev
j is ‘close’ to η?

j , but employs readily available
data, as these weights are equal to the coefficient in the expansion of the solution at the previous
time step, i.e., xj−1 = x̄j−1 + Zj−1η

prev
j . We now provide bounds for the difference between these

computable weights and the ideal weights.

Theorem 3. The difference between the previous weights and ideal weights can be bounded as

‖η?
j − η

prev
j ‖ ≤ 1

σmin

(
‖PZj−1

Aj
−P

Zj−1

Aj−1
‖‖x?

j − x̄j‖+ σ1‖(x?
j − x̄j)− (x?

j−1 − x̄j−1)‖
)

(42)

and

‖η̄?
j − η

prev
j ‖ ≤ 1

σmin

(
‖PZj−1

CT C
−P

Zj−1

Aj−1
‖‖x?

j − x̄j‖+ σ1‖(x?
j − x̄j)− (x?

j−1 − x̄j−1)‖
)
, (43)

where σmin denotes the smallest singular value of Zj−1 and σ1 denotes the largest singular value of

P
Zj−1

Aj−1
.

Proof. We prove the result in Eq. (42); Eq. (43) follows trivially. First note that Zj−1

(
η?
j − η

prev
j

)
=

P
Zj−1

Aj
(x?

j − x̄j)−P
Zj−1

Aj−1
(x?

j−1 − x̄j−1) from Eqs. (7), (29), and (41). Then, we have

‖Zj−1

(
η?
j − η

prev
j

)
‖ ≤‖PZj−1

Aj
(x?

j − x̄j)−P
Zj−1

Aj−1
(x?

j − x̄j)‖+ ‖PZj−1

Aj−1

((
x?
j − x̄j

)
−
(
x?
j−1 − x̄j−1

))
‖

≤‖PZj−1

Aj
−P

Zj−1

Aj−1
‖‖x?

j − x̄j‖+ σ1‖(x?
j − x̄j)− (x?

j−1 − x̄j−1)‖

where we have applied the triangle inequality and used σ1 = maxx 6=0 ‖P
Zj−1

Aj−1
x‖/‖x‖. Eq. (42)

follows from applying σmin = minx 6=0 ‖Zj−1x‖/‖x‖.

We now provide conditions under which the computable weights are equal to the ideal weights.

Corollary 1. If Aj−1 = Aj and x?
j − x̄j = x?

j−1 − x̄j−1, then η?
j = ηprev

j . Alternatively, if

CTC = Aj and x?
j − x̄j = x?

j−1 − x̄j−1, then η̄?
j − η

prev
j .

Proof. The result follows trivially from Eqs. (42) and (43).

2. Radial basis functions. Noting that Zj−1η
?
j = P

Zj−1

Aj

(
x?
j − x̄j

)
, we can approximate ideal

weights η?
j by approximating the component of x?

j − x̄j in Zj−1. To achieve this, we assume the
jth solution can be approximated as a linear combination of previous solutions, i.e.,

P
Zj−1

Aj

(
x?
j − x̄j

)
≈

ω∑
i=1

ρRBF(j, j − i)(PZj−i

Aj−i

(
x?
j−i − x̄j−i

)
), (44)
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where ω ∈ N(j − 1) denotes the number of previous solutions to include and ρRBF(i, j) denotes a
radial basis function. This implies weights of

ηRBF
j (ω) =

ω∑
i=1

ρRBF(j, j − i)
(
ZT

j−iAj−iZj−i

)−1

ZT
j−iAj−i

(
x?
j−i − x̄j−i

)
=

ω∑
i=1

ρRBF(j, j − i)ηprev
j+1−i.

(45)

In practice, we employ a inverse-distance-weight radial basis function of the form ρRBF(i, j) =
ρIDW(|i − j|) with ρIDW(r) := 1/r2; we set ω to be the number of linear systems since the most
recent truncation.

3.3.3 Metric

Theorems 1 and 2 demonstrate that POD minimizes an upper bound for the errors
∥∥∥x?

j −P
x̄j+Yj
Aj

(
x?
j

)∥∥∥
Aj

and ‖z
(
x?
j

)
− z

(
P

x̄j+Yj
Aj

(
x?
j

))
‖2 only if POD metrics of Θ = Aj and Θ = CTC are used, respectively.

However, as previously discussed, we aim to avoid using Aj to truncate the basis Zj−1, as it entails
reduced computations with the jth linear system (i.e., solving Eqs. (13) with Yj = Zj−1). Therefore,
we employ two practical choices for metrics in Eq. (28):

1. Θ = Aj−1. This approach aligns the truncation with minimizing
∥∥∥x?

j −P
x̄j+Yj
Aj

(
x?
j

)∥∥∥
Aj

. From

Eq. (27), the resulting basis is Aj−1-orthogonal. Here, computing the POD basis via Algorithm 4
is appropriate, as a symmetric factorization of Aj−1 is not readily available.

2. Θ = CTC. This is an output-oriented approach associated with minimizing the output error. From
Eq. (27), the resulting basis is CTC-orthogonal. Computing this POD basis via Algorithm 5 is
appropriate, as a symmetric factor of the (pseudo)metric is readily available as C.

3.3.4 Summary

In summary, the four goal-oriented POD truncation methods we propose are

1. Yj+1 = U
Aj
yj+1

(
Zj ,η

prev
j

)
, computable by (Yj+1) = pod evd(Zj ,η

prev
j ,Aj , εy),

2. Yj+1 = U
Aj
yj+1

(
Zj ,η

RBF
j (ω)

)
, computable by (Yj+1) = pod evd(Zj ,η

RBF
j (ω),Aj , εy),

3. Yj+1 = UCT C
yj+1

(
Zj ,η

prev
j

)
, computable by (Yj+1) = pod svd(Zj ,η

prev
j ,C, εy),

4. Yj+1 = UCT C
yj+1

(
Zj ,η

RBF
j (ω)

)
, computable by (Yj+1) = pod svd(Zj ,η

RBF
j (ω),C, εy),

where εy ∈ [0, 1] is a statistical ‘energy criterion’ used to truncate the POD basis, and pod evd and
pod svd are described in Algorithms 4 and 5, respectively.

4 Three-stage algorithm

We propose a novel three-stage algorithm for augmented PCG to efficiently compute inexact solutions;
the algorithm leverages an augmenting basis that is optimally ordered and yields a well-conditioned
reduced matrix. In particular, for linear system j, we assume that an augmenting basis Yj ∈ Rn×yj

? is

available that (1) contains a low-dimensional basis Wj ∈ Rn×wj
? with Wj ⊆ Yj ⊆ Rn and wj ≤ yj ≤ n

that can capture an accurate solution, and (2) yields a well-conditioned reduced matrix YT
j AjYj .

Goal-oriented POD basis fits naturally into this framework. First, it is optimally ordered (Remark
1): the first few POD basis vectors span an optimal subspace in the sense of minimizing the objective
function in Eq. (25), which is an an upper bound for the Aj-norm and CTC-norm of the error, respectively
(Theorems 1 and 2). This implies that the first few POD vectors could be employed as Wj . Second,
it automatically yields a well-conditioned reduced matrix if Θ = Aj ; this will be further discussed in
Section 4.4.1. However, other truncation methods that satisfy these properties can also be considered
within the proposed three-stage algorithm.
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4.1 Stage 1

The objective of Stage 1 is to ‘jump start’ the algorithm by computing an accurate solution at very low

cost. To achieve this, this stage computes x̄j + Wjŵj = P
x̄j+Wj

Aj

(
x?
j

)
by solving

WT
j AjWjŵj = WT

j (bj −Aj x̄j) (46)

directly. The assumptions placed on Wj imply that the solution x̄j + Wjŵj will be accurate and a
direct solve will be inexpensive. Computing this solution can be executed via Algorithm 2 as

(ŵj , R̂j) = direct reduced solve(Aj ,bj −Aj x̄j ,Wj).

Algorithm 2 direct reduced solve

Input: A, b, W
Output: ŵ, R̂
1: Compute Â = WTAW and b̂ = WTb
2: Solve Âŵ = b̂ by Cholesky factorization Â = R̂T R̂

4.2 Stage 2

The objective of Stage 2 is to improve upon the stage-1 solution x̄j +Wjŵj by efficiently solving over the
entire augmenting subspace Yj , whose dimension yj may be modest. To achieve this, this stage solves

YT
j AjYj ŷ

?
j = YT

j (bj −Aj x̄j −AjWjŵj) (47)

iteratively to tolerance ε̂j via augmented CG with augmenting basis Ŵj ∈ Ryj×wj
? , which represents

the stage-1 basis in augmenting-subspace coordinates, i.e., Wj = YjŴj . This approach is promising
for two reasons. First, it precludes the need to explicitly compute the reduced matrix YT

j AjYj , which
consumes O((τj +yj)yjn) flops, where τj denotes the average number of nonzeros per row of Aj . Instead,
matrix–vector products of the form YT

j AjYjp can be computed via YT
j (Aj(Yjp)) in O((2yj + τj)n)

flops. Second, a small number of iterations will be needed for convergence if the reduced matrix YT
j AjYj

is well conditioned, as has been assumed.
Therefore, this stage amounts to executing Algorithm 1 as

(k̂j , x̂j , X̂j , Γ̂j) = augmented pcg(YT
j AjYj ,Y

T
j (bj −Aj x̄j),Ŵjŵj ,Ŵj , I, ε̂j)

with two implementation optimizations:

• Matrix–vector products of the form YTAYp appearing in steps 4, 10, and 13 of Algorithm 1 can
be computed efficiently via YT (A(Yp)) as discussed above.

• The solves in steps 4 and 13 of Algorithm 1 can be performed directly in O(w2
j ) flops, as the

Cholesky factorization of YTAY = R̂T
j R̂j can be reused from stage 1.

The (inexact) solution increment Yj ŷj = Xj x̂j computed by stage 2 lies in the range of a (reduced)

Krylov basis Xj = YjX̂j ∈ Rn×k̂j with Xj ⊆ Yj ⊆ Rn and X̂j ∈ Ryj×k̂j , where k̂j ≤ yj denotes the
number of stage-2 iterations. This basis satisfies XT

j AjXj = Γ̂j and XT
j AjWj = 0, while the resulting

solution satisfies

x̄j + Wjŵj + Xj x̂j = P
x̄j+Wj+Xj

Aj

(
x?
j

)
(48)

Ref. [20] proposed a similar idea referred to as the iterative reuse of Krylov subspaces (IRKS). This
approach did not employ stage-1 direct solve and suppored using either Yj = [V1 · · · Vj−1] or Yj =
Vj−1 (i.e., no truncation).
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4.3 Stage 3

The objective of stage 3 is to continue iterating in the full space until a specified tolerance εj is satisfied.
This stage therefore solves

Ajδx
?
j = bj −Aj x̄j −AjWjŵj −AjXj x̂j (49)

via augmented PCG with augmenting basis [Wj , Xj ]. This amounts to executing Algorithm 1 as

(kj , v̂j ,Vj ,Γj) = augmented pcg(Aj ,bj −Aj x̄j ,
[
ŵT

j , x̂T
j

]T
, [Wj , Xj ],Mj , εj)

with the following optimization:

• The solves in steps 4 and 13 can be performed directly in O(w2
j + k̂j) flops, as the Cholesky

factorization YTAY = RT
j Rj is readily available from stages 1 and 2 as

Rj =

[
R̂j 0

0

√
Γ̂j

]
.

The solution increment δxj = Vj v̂j computed by stage 3 lies in the range of a Krylov basis Vj ∈
Rn×kj

? , where kj ≤ n denotes the number of stage-3 iterations. This basis satisfies VT
j AjVj = Γj with

Γj ∈ Rkj×kj diagonal and VT
j Aj [Wj , Xj ] = 0, while the resulting solution satisfies

x̄j + Wjŵj + Xj x̂j + Vj v̂j = P
x̄j+Wj+Xj+Vj
Aj

(
x?
j

)
. (50)

4.3.1 Accounting for entire augmenting subspace

The stage-3 implementation described above augments with the subspace range([Wj , Xj ]) ⊆ Yj . How-
ever, if the stage-2 tolerance ε̂j is small, then we know the stage-2 solution x̄j + Wjŵj + Xj x̂j is close
to being optimal over the entire augmenting subspace, i.e.,

x̄j + Wjŵj + Xj x̂j = P
x̄j+Wj+Xj

Aj

(
x?
j

)
≈ P

x̄j+Yj
Aj

(
x?
j

)
.

Therefore, employing Y ← Yj in stage 3 may reduce the number of iterations to convergence, as this
ensures that new search directions remain Aj-orthogonal to the full augmenting subspace Yj over which
the solution has already been computed to tolerance ε̂j .

However, for this approach to be practical, the reduced solves in steps 4 and 13 must be performed
efficiently; performing these solves directly requires computing and factorizing the matrix YT

j AjYj ,
which is not available from stages 1 or 2. In fact, computing and factorizing this matrix incurs O((τj +
yj

2)n + yj
3) flops: the same computational cost as executing stage 1 with Wj = Yj . We therefore

propose performing these solves iteratively, i.e, by executing stage 2 within stage 3. In particular, this
stage-3 variant executes Algorithm 1 as

(kj , v̂j ,Vj ,Γj) = augmented pcg(Aj ,bj −Aj x̄j ,Ŵjŵj + X̂j x̂j ,Yj ,Mj , εj)

with the following optimizations:

• At iteration k, the solves in steps 4 and 13 can be performed iteratively by executing Algorithm 1
as

(k̄
(k)
j x̂

(k)
j X̄

(k)
j Γ̄

(k)
j ) = augmented pcg(YT

j AjYj ,Y
T
j (Ajz

(k+1)
j ),0, [Ŵj , X̂j , X̄

(0)
j , · · · , X̄

(k−1)
j ], I, ε̄j)

with the following optimizations:

– Matrix–vector products of the form YTAYp appearing in steps 4, 10, and 13 can be computed
efficiently via YT (A(Yp)).

– The solves in steps 4 and 13 can be performed directly in O(w2
j + k̂j +

∑k−1
`=0 k̄

(`)
j ) flops, as the

Cholesky factorization YTAY = R̄
(k)
j R̄

(k)
j with

R̄
(k)
j =



R̂j 0 0 · · · 0

0

√
Γ̂j 0 · · · 0

0 0

√
Γ̄

(0)
j · · · 0

...
...

...
. . .

...

0 0 0 0

√
Γ̄

(k−1)
j
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can be reused from stage 1, stage 2, and earlier stage-3 iterations.

This solution increment δxj = Vj v̂j also lies in the range of a Krylov basis Vj ∈ Rn×kj
? with

VT
j AjVj = Γj ∈ Rkj×kj diagonal; however, the basis now satisfies VT

j Aj [Wj , Xj , YjX̄
(0)
j , · · · , YjX̄

(kj−1)

j ] =
0, while the resulting solution satisfies

x̄j + Wjŵj + Xj x̂j + Vj v̂j ≈ P
x̄j+Yj
Aj

(
x?
j

)
. (51)

Note that the solution does not associate with an exact orthogonal projection.

4.4 Overall algorithm

Algorithm 3 reports the proposed three-stage algorithm, where ȳ denotes the maximum number of accu-
mulated vectors to preserve before truncation, ϕ is a boolean variable that is 1 if the entire augmenting
subspace (not just stage 1 and 2 directions) should be orthogonalized against as discussed in Section
4.3.1. The variable % ∈ [0, 1] is a threshold for determining which new vectors should be included in the
stage 1 basis.

Algorithm 3 three stage algorithm

Input: {Aj}pj=1, {bj}pj=1, {x̄j}pj=1, forcing sequence {εj}pj=1, storage threshold ȳ, stage-1 option %, stage-3 option ϕ
Output:
1: W1 ← ∅, X1 ← ∅, j̄ ← 0
2: for j = 1, . . . , p do
3: if Wj 6= ∅ then
4: Stage 1 : (ŵj , R̂j) = direct reduced solve(Aj , bj −Aj x̄j , Wj)
5: end if
6: if Xj 6= ∅ then
7: Stage 2 : (k̂j , x̂j , X̂j , Γ̂j) = augmented pcg(YT

j AjYj , YT
j (bj −Aj x̄j), Ŵjŵj , Ŵj , I, ε̂j).

Note optimizations discussed in Section 4.2
8: end if
9: if ϕ =1 then {orthogonalize against entire Yj}

10: Stage 3 : (kj , v̂j , Vj , Γj) = augmented pcg( Aj , bj −Aj x̄j , Ŵjŵj + X̂j x̂j , Yj , Mj , and εj).
Note optimizations discussed in Section 4.3.1

11: else
12: Stage 3 : (kj , v̂j , Vj , Γj) = augmented pcg( Aj , bj −Aj x̄j ,

[
ŵT

j x̂T
j

]T
, [Wj Xj ], Mj , εj).

Note optimizations discussed in Section 4.3
13: end if
14: Yj+1 ←

[
Yj , Vj

√
Γj

]
15: Wj+1 ←Wj

16: Kj ← {i | [Γj ]ii/
∑kj

k=1[Γj ]kk > %}
17: for k ∈ Kj do
18: Wj+1 ← [Wj+1, [Vj ]k

√
[Γj ]kk]

19: end for
20: if % =1 then {include new vectors in stage-1 basis}
21: Wj+1 ← [Wj , Vj

√
Γj ]

22: else
23: Wj+1 ←Wj

24: end if
25: if yj+1 > ȳ then {compress}
26: Yj+1 = compression(Yj+1)
27: Enforce Aj-orthogonality: YT

j+1AjYj+1 = LjL
T
j (Cholesky factorization), Yj+1 ← Yj+1L

−T

28: Determine Wj+1 with range(Wj+1) ⊆ range(Yj+1)
29: j̄ ← j
30: end if
31: end for

Step 27 of Algorithm 3 ensures that YT
j̄+1Aj̄Yj̄+1 = I. We now show that this step is critical for

enabling fast stage-2 convergence: it leads to well-conditioned reduced matrices for slowly varying matrix
sequences.
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Theorem 4. In Algorithm 3, if either (1) % = 1 and Wj̄+1 = Yj̄+1 in step 28, or (2) ϕ = 1 and
ε̂k = ε̄k = 0, k = j̄ + 1, . . . , j − 1, then

‖YjAjYj − I‖ ≤
j∑

k=j̄+1

‖Yk‖2‖Ak −Ak−1‖. (52)

Proof.

‖YT
j AjYj − I‖ = ‖YT

j Aj−1Yj − I + YT
j (Aj −Aj−1)Yj‖ (53)

≤ ‖
[
Yj−1, Vj−1

√
Γj−1

]T
Aj−1

[
Yj−1, Vj−1

√
Γj−1

]
− I‖+ ‖Yj‖2‖Aj −Aj−1‖

(54)

= ‖
[

Yj−1Aj−1Yj−1 − I 0
0 0

]
‖+ ‖Yj‖2‖Aj −Aj−1‖, (55)

= ‖Yj−1Aj−1Yj−1 − I‖+ ‖Yj‖2‖Aj −Aj−1‖, (56)

(57)

where we have used YT
k AkVk = 0, k = 1, . . . , j − 1 (which holds under the stated assumptions) and√

Γk
T
VT

k AkVk

√
Γk = I, k = 1, . . . , j − 1. By induction, we have

‖YT
j AjYj − I‖ ≤

j∑
k=j̄+1

‖Yk‖2‖Ak −Ak−1‖, (58)

where we have used Yj̄+1Aj̄Yj̄+1 = I.

4.4.1 Integration with goal-oriented POD

Section 3.3.4 described four sets of goal-oriented POD ingredients (with ω = j − j̄ and Zj = Yj+1) that
could be employed as compression in step 26 of Algorithm 3. In all cases, step 28 of Algorithm 3 can
be executed by setting Wj+1 equal to the first wj vectors of Yj+1, where wj is determined from the
appropriate POD algorithm (Algorithm 4 or 5) with a modest statistical energy criterion ε ← εw with
εw ≤ εy.

The first two options Yj+1 = U
Aj
yj+1

(
Zj ,η

prev
j

)
and Yj+1 = U

Aj
yj+1

(
Zj ,η

RBF
j (ω)

)
expose two imple-

mentation optimizations. First, during any truncation iteration j̄, the algorithm should employ Wj̄ = Yj̄ .
The reason is that the compression step requires computing YT

j̄ Aj̄Yj̄ explicitly; because this is the same
matrix used in stage one with Wj̄ = Yj̄ , employing this choice can lead to faster stage-3 convergence at no
additional computational cost. Second, orthogonalization step 27 in Algorithm 3 requires no operations,
as the basis is automatically Aj̄-orthogonal (see Eq. (27)).

5 Numerical experiments

5.1 Problem description

We now assess the proposed methodology using model problems from Sierra/SolidMechanics [13], which
is a Lagrangian, three-dimensional code for finite element analysis of solids and structures.

5.1.1 Problem 1: Pancake problem

We first consider computing the quasistatic response of the ‘pancake’ domain pictured in Figure 1. The
material is steel, which is characterized by a Young’s modulus of E = 2.0×108 N

mm · s2
, Poisson’s ratio of

ν = 0.3, density of ρ = 7.86×10−6 kg/mm3. The logarithmic thermal strain of steel is linearly dependent
on temperature εthermal = (11.7× 10−6)∆T 1

K
, where ∆T denotes the change in temperature (in Kelvin)

from the reference temperature.
The x-, y-, and z-displacements of the rightmost surface (gray in Figure 1(b)) are set to zero. The

x- and y- displacements of the leftmost surface (red in Figure 1(b)) are set to zero; this surface is also
subjected to the time-dependent pressure load depicted in Figure 2a.

13



(a) Finite-element mesh

(b) Pressure-loaded surface (red), contact surfaces
(blue), prescribed temperature (green), Dirichlet
boundary condition (gray).

Figure 1: Pancake problem.
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(b) Time-dependent temperature load applied to
bolts.

Figure 2: Time-dependent loadings for the pancake problem.

The time-dependent thermal load depicted in Figure 2b is applied to the bolts (green components in
Figure 1(b)) to emulate a pre-loading condition. Contact surfaces are shown in blue in Figure 1(b); they
are enforced by an augmented Lagrangian approach with DASH search using a penalty factor of 1.25
and a friction coefficient of 0.5.

The problem is discretized by the finite-element method using a mesh generated by the SIERRA
toolkit [7]. The mesh consists of 9108 nodes and 4719 hexahedral elements. At each node, there are
three degrees of freedom (the x-, y-, and z-displacements), which leads to 27, 324 total degrees of freedom
for the finite-element model.

As the time scales of the load application are relatively large, we neglect inertial effects and consider
solving the quasi-static equations

f int (ui) + f contact
(
ui, λ

l
)

= f ext(ti), l = 1, . . . , L, i = 1, . . . , T, (59)

where T denotes the number of time steps, f int : Rn → Rn is a nonlinear operator representing the
internal forces, f contact : Rn × R+ → Rn is nonlinear in its first argument and represents contact forces,
f ext : [0, 65]→ Rn is the external-force vector, and ui ∈ Rn denotes the displacement at time ti. As the
contact constraints are enforced using an augmented Lagrangian approach within a continuation loop,
λl ∈ R+ with λl ≤ λl+1, l ∈ N(L) denotes the penalty factor at continuation iteration l. Note that these
equations also include equality constraints arising from the Dirichlet boundary conditions.
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Solving Eqs. (59) is mathematically equivalent to solving

minimize
z∈Rn

gli(z) (60)

with −∇gli : z 7→ f ext(ti) − f int (z) − f contact
(
z, λl

)
for a local minimum. We solve problem (60)

using the nonlinear conjugate gradient method with a displacement-dependent preconditioner M̄l : u 7→
∇uf

int (u) + ∇uf
contact

(
u, λl

)
∈ SPD(n). This results in a sequence of linear systems of the original

form in Eqs. (1): one at each nonlinear conjugate-gradient iteration. Here, Aj = M̄l(u
l(k)
i ), bj =

∇gli(u
l(k)
i ), u

l(k)
i ∈ Rn denotes the displacement at time step i, continuation iteration l, and nonlinear

conjugate gradient iteration k. The mapping between timestep i, continuation iteration l, nonlinear
conjugate-gradient iteration k and the index of the linear system j is provided by j : (i, l, k) 7→ k +∑i

i=1

∑l
l=1 K(i, l), where K(i, l) denotes the number of conjugate-gradient iterations needed to solve

problem (60). For this problem, the total number of linear systems we consider is p = 47. Each of these
linear systems is preconditioned using a three-level algebraic multigrid (AMG) preconditioner Mj with
incomplete Cholesky smoothing for both pre-smoothing and post-smoothing. This preconditioner tends
to be expensive to apply, especially when compared with the cost of a matrix–vector product for this
system.

5.1.2 Problem 2: I-beam problem

(a) Finite-element mesh
(b) Mesh with boundary-condition informa-
tion.

Figure 3: I-beam problem.

We next consider computing the quasistatic response (neglecting thermal effects) of the I-beam pic-
tured in Figure 3a, where there are holes in the web section. The material is steel 304L, which is
characterized by a Young’s modulus of E = 2.1× 108 N

mm · s2
, Poisson’s ratio of ν = 0.33, and density of

ρ = 7.8 × 10−6 kg/mm3. The x-, y-, and z-displacement of the bottom-left point (blue point in Figure
3b(b)) are set to zero. The x- and y- displacement of the bottom-right point (yellow point in Figure 3b)
are set to zero. The x-displacement of the top-left point (magenta point in Figure 3b) is set to zero.
Finally, a torsional traction is applied the end surfaces (red and green in Figure 3); Ref. [1, Eq. (11)]
reports details on the tractional loading, where the scale factor for the current problem is 0.01. The mesh
for this problem consists of 13,137 nodes and 8,576 hexahedral elements. At each node, there are three
degrees of freedom (the x-, y-, and z-displacements), which leads to 39, 411 total degrees of freedom for
the finite-element model.

We again neglect inertial effects and consider solving the quasi-static equations

f int (ui) = f ext(ti), i = 1, . . . , T. (61)

Note that these equations also include equality constraints arising from the Dirichlet boundary conditions
and the continuation loop for computing contact forces does not appear for this problem. Solving Eqs. (61)
is equivalent to solving

minimize
z∈Rn

gi(z) (62)

with −∇gi : z 7→ f ext(ti)− f int (z) for a local minimum. We again use the nonlinear conjugate gradient
method to solve problem (62); we also again employ a displacement-dependent preconditioner M̄ :
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u 7→ ∇uf
int (u) + ∇uf

contact
(
u, λl

)
∈ SPD(n). This results in a sequence of linear systems of the

original form in Eqs. (1): one at each nonlinear conjugate-gradient iteration. Here, Aj = M̄(u
(k)
i ) and

bj = ∇gi(u(k)
i ), where the mapping between time step and nonlinear conjugate-gradient iteration is

provided by j : (i, k) 7→ k +
∑i

i=1 K(i). Here, K(i) denotes the number of conjugate-gradient iterations
needed to solve problem (62). For this problem, the total number of linear systems we consider is p = 49.
Each of these linear systems is preconditioned using the same multigrid preconditioner Mj as described
in Section 5.1.1; the only modification is that four levels of multigrid are used in this case due to the
larger number of degrees of freedom.

5.2 Experimental setup

We implemented our proposed method in Matlab and ran experiments on a Macbook Pro with Intel 2.7
GHz i5 processor and 8 GB of RAM; the implementation performs the linear-system solves after reading
in the linear systems generated by Sierra/SolidMechanics as described in Section 5.1.

For all problems, we test our framework using a full-orthogonalization method (FOM) rather than
the conjugate-gradient recurrence; this amounts to replacing Step 14 in Algorithm 1 with the following
[24]:

p(k+1) = z(k+1) −Yµ(k+1)

for i = 1, . . . , k do

β(k+1),i = (r(k+1))T z(k+1)

(r(i))T z(i)

p(k+1) = p(k+1) + β(k+1),ip(i)

end for

In exact arithmetic, this modification does not affect the result. However, in finite precision, this mod-
ification ensures that that the basis Vj is full rank; this is sometimes necessary to ensure nonsingular
systems during stage-1 solves. Removing the effect of possible rank deficiency from the numerical exper-
iments simplifies interpretation of the results.

Iterative-solver performance can be measured in three primary ways: the number of incurred matrix–
vector products, the number of stage-3 iterations (which is equivalent to the number of preconditioner
applications), and the wall time per linear-system solve. While the wall time is the most important metric
in practice, we report all three metrics (in terms of their averages over all linear systems) to provide a
more complete picture of performance, as the specific linear system and choice of preconditioner can have
a strong effect on the relative cost of operations.

5.3 Method comparison: Pancake problem

This section compares the following methods:

1. FOM. This approch simply solves each linear system independently without recycling using the full
orthogonalization method.

2. No compression. This approach does not perform truncation, and employs ȳ = ∞, % = 1, and
ϕ = 0 in Algorithm 3. Because it employs all Krylov vectors as the augmenting-subspace basis, it
requires the fewest stage-3 iterations and, thus, the fewest number of preconditioner applications;
however, the memory costs and orthogonalization costs are the largest for this method.

3. DF(100,0). This is the standard approach for deflation-based truncation, which places all augmenting-
subspace basis vectors in the stage-1 basis. Algorithm 3 parameters are ȳ = 200, % = 1, ϕ = 0,
and Wj+1 =

[
[Yj+1]1 · · · [Yj+1]100

]
in step 28. In step 26, the augmenting space is computed by

solving Eq. (22) for j ← j + 1 and setting Yj+1 ← [Zjg1 · · · Zjg100].

4. POD(100,0). This approach employs POD truncation and places augmenting-subspace basis vectors

in the stage-1 basis. Algorithm 3 parameters are ȳ = 200, % = 1, ϕ = 0, Yj+1 = U
Aj

100

(
Zj ,η

RBF
j (j − j̄)

)
in step 26, and Wj+1 =

[
[Yj+1]1 · · · [Yj+1]100

]
in step 28.

5. POD(5,95)it stg1. This approach employs POD truncation, places only the dominant POD modes
in the stage-1 basis, and places all post-truncation Krylov vectors in the stage-1 basis. Algorithm

3 parameters are ȳ = 200, % = 1, ϕ = 1, Yj+1 = U
Aj

100

(
Zj ,η

RBF
j (j − j̄)

)
in step 26, and Wj+1 =[

[Yj+1]1 · · · [Yj+1]5
]

in step 28. Note that ε̂j = 10−4εj for εj ≥ 10−3, and ε̂j = 10−5εj otherwise
and ε̄j = 10−2εj for all tolerances.
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6. POD(5,95)it mixed. This approach employs POD truncation, places only the dominant POD
modes in the stage-1 basis, and places only the dominant post-truncation Krylov vectors in the
stage-1 basis. Algorithm 3 parameters are employs ȳ = 200, % = 1 × 10−3, ϕ = 1, Yj+1 =

U
Aj

100

(
Zj ,η

RBF
j (j − j̄)

)
in step 26, and Wj+1 =

[
[Yj+1]1 · · · [Yj+1]5

]
in step 28. Note ε̂j = 10−4εj

for εj ≥ 10−2, and ε̂j = 10−6εj otherwise and ε̄j = 10−2εj for all εj .

7. POD(5,95)it stg2. This approach employs POD truncation, places only the dominant POD modes
in the stage-1 basis, and places none of the post-truncation Krylov vectors in the stage-1 basis.

Algorithm 3 parameters are employs ȳ = 200, % = 0, ϕ = 1, Yj+1 = U
Aj

100

(
Zj ,η

RBF
j (j − j̄)

)
in step

26, and Wj+1 =
[
[Yj+1]1 · · · [Yj+1]5

]
in step 28. Note ε̂j = 10−4εj for εj ≥ 10−2, and ε̂j = 10−7εj

otherwise. ε̄j = 10−2εj for εj ≥ 10−3 and ε̄j = 10−3εj otherwise.
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Figure 4: Results for the pancake problem: average number of matrix–vector products, preconditioner
applications, and wall time to compute solutions within tolerances εj = 10−1 through εj = 10−6.

Figure 4a reports results for all tested methods. First, we note that applying the AMG preconditioner
is computationally expensive for this problem, especially relative to matrix–vector products. Therefore,
there is a strong relationship between the wall-time performance and the preconditions-application per-
formance of iterative methods in this section. Next, we note that recycling provides a significant benefit,
as applying FOM without recycling is the slowest method for all tested tolerances. To more clearly
distinguish the differences between recycling methods, Figure 4b reports the same results with the FOM
results removed. Here, we see that the no-compression case yields the best performance as measured in
both wall time and preconditioner applications; however, it performs the worst in matrix–vector prod-
ucts. This arises from two primary effects: (1) the preconditioner application is the dominant cost for
this problem, so minimizing the number of stage-3 iterations—which will always occur by not truncating
the augmenting subspace—yields the best wall time performance, and (2) the problem is small scale, so
there is not a significant penalty to retaining all Krylov vectors. We also note that the POD methods
(especially the POD(100,0) method) perform similarly to the no compression method; this suggests that
POD truncation effectively captures the most important subspace from the set of available vectors.

Next, we note that the ‘inner’ iterative method described in Section 4.3.1—which is used by the three
POD(5,95) methods—produces the same number of preconditioner applications as POD(100,0). This
illustrates that the inner iterative method has successfully orthogonalized against the entire augmenting
subspace. Figure 5 illustrates this point further by comparing three methods: the POD(5,95)it stg1
method, a variant of POD(5,95)it stg1 that employs ϕ = 0 in Algorithm 3, and the POD(100,0) method.
While POD(5,95)it stg1 matches the preconditioning applications of POD(100,0), this comes at the cost
of additional matrix–vector products for stricter tolerances; further these matrix–vector products are
generally not applied as a block as in POD(100,0), which makes them more expensive on average. In
addition, the cost of repeatedly multiplying vectors by the full augmenting-subspace basis Yj within the
inner iterative method is not counted toward matrix–vector products, even though this operation incurs
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a non-negligible cost due to the density of Yj . As a result, POD(100,0) yields the lowest wall time;
we might expect POD(5,95)it stg1 to produce a lower wall time when the dimension of the augmenting
subspace is larger.
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Figure 5: Comparison of iterative and non-iterative Stage 3 for the problem 1.

As shown in Theorem 4, the reduced matrix YT
j AjYj should be well conditioned if the system

matrices do not vary significantly. Figure 6 illustrates this: the condition number of the reduced system
is close to one for all linear systems. This implies fast convergence of stage 2. Note that this effect comes
‘for free’ by employing a POD metric of Aj̄ , as the basis is automatically Aj̄-orthogonal; this precludes
the need for orthogonalization step 27 in Algorithm 3, as was noted in Section 4.4.1.
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Figure 6: Condition number for reduced linear systems.

5.4 Method comparison: I-beam problem

We compare the same methods as in Section 5.3; the only modification is that all POD(5,95) methods
employ parameters ε̂j = 10−4εj , ε̄j = 10−2εj in Algorithm 3.

Figure 7a reports results for all tested methods. Again, we first note that the use of recycling leads
to significant improvements, as the FOM method (without recycling) produces the largest wall time
and requires the largest number of preconditioner applications. To more easily distinguish the relative
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merits of the recycling methods, Figure 7b reports the results without FOM. This figure illustrates the
need for trunction within recycling. As for the pancake problem, the ‘no truncation’ case minimizes
the number of preconditioner applications; however, the lower matrix–vector multiplication cost and the
lower overhead in the stage-3 orthogonalization steps lead to lower overall costs for several truncation
methods. Figure 7b also illustrates the benefit of using the hybrid direct/iterative approach to solve
over the augmenting subspace, as POD(5,95)it stg2—which employs this approach—produces the lowest
wall time and number of matrix–vector products for all tested tolerances. We also note that all POD-
based truncation methods outperform deflation in terms of preconditioner applications; all POD methods
except for POD(5,95)it mixed also outperform deflation in terms of matrix–vector multiplications and
wall time.

-3-2.5-2-1.5-1-0.5
10

0

10
2

10
4

matvecs

No compression
POD(100,0)
POD(5,95)it stg1
POD(5,95)it mixed
POD(5,95)it stg2
DF(100,0)
FOM

-3-2.5-2-1.5-1-0.5
10

0

10
2

10
4

preconditioner applications

δ

-3-2.5-2-1.5-1-0.5

10
0

time (s)

(a) All methods

-3-2.5-2-1.5-1-0.5
10

0

10
2

10
4

matvecs

No compression
POD(100,0)
POD(5,95)it stg1
POD(5,95)it mixed
POD(5,95)it stg2
DF(100,0)

-3-2.5-2-1.5-1-0.5
10

0

10
1

10
2

preconditioner applications

δ

-3-2.5-2-1.5-1-0.5

0.5

1

1.5
2

time (s)

(b) Recycling methods only

Figure 7: Results for the I-beam problem: average number of matrix–vector products, preconditioner appli-
cations, and wall time to compute solutions within tolerances εj = 10−0.5 through εj = 10−3.

Finally, Figure 8 assess the performance of the ‘inner’ iterative method proposed in Section 4.3.1,
which aims to orthogonalize against the entire augmenting subspace within stage 3 using an iterative
method. These data show that the iterative method in POD(5,95)it stg1 successfully matches the number
of stage-3 iterations (i.e., preconditioner applications) as POD(100,0), yet it incurs far fewer matrix–
vector products. In fact, the number of matrix–vector products is close to that realized by POD(5,95)
stg1 without the inner iterative method.

5.5 POD-weights experiments

This section compares the performance of POD-based truncation methods when various POD weights
are employed (see Section 3.3.2). To assess this, POD compression is performed after the solution of the
first ten linear systems, and performance of the resulting truncated augmented subspace is assessed for
the eleventh linear system. That is, we propose computing the truncated augmenting subspace according
to

Y11 = UA10
y11 (Z10,γ) (63)

for various choices of γ. We compare the following approaches:

1. Ideal weights. This case employs γ = η?
11 as defined in Eq. (29). Although this weighting scheme

is not practical, it illustrates the best possible choice.

2. Previous weights. This case employs γ = ηprev
11 as defined in Eq. (41).

3. Radial-basis-function weights. This case employs γ = ηRBF
11 (11) as defined in Eq. (45). This is the

choice used by the previous experiments in this section.

of the POD weights proposed in Section 3.3.2.
Figure 9a illustrates that the ideal weights minimize the residual after the reduced system is solved,

which implies that the ideal weights lead to a better estimate of the solution in the augmenting subspace.
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Figure 8: Results for the I-beam problem: POD-method performance in terms of average number of matrix–
vector products, preconditioner applications, and wall time to compute solutions within tolerances εj =
10−0.5 through εj = 10−3.
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Figure 9: POD-weights experiments for the pancake problem. Results correspond to solving linear system
eleven after performing POD-based compression for linear system ten using radial-basis-function weights
(‘All’), previous weights (‘Recent’), and ideal weights (‘Ideal’).
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Note that the radial-basis-function weights (which was employed for POD results in previous sections)
yields results that are close to the ideal case. Figure 9b shows that the ideal weights also minimize the
number of stage-3 iterations, while the two other methods produce a similar number of stage-3 iterations
as the ideal-weights case. This suggests that radial-basis-function weights provide a good approximation
of the ideal weights for both producing an accurate solution in the augmenting subspace and yielding
similar stage-3 convergence.

5.6 Output-oriented POD experiments

This section assesses the performance of output-oriented POD, i.e., when the metric is set to Θ = CTC
as proposed in Section 3.3.3. For this purpose, we consider a set of q = 100 output quantities of interest
that are random linear functionals of the solution; as such C ∈ [0, 1]100×n with entries drawn from a
uniform distribution in the interval [0, 1]. We then compare the following methods:

1. No compression. This approach does not perform truncation, and employs ȳ = ∞, % = 1, and
ϕ = 0 in Algorithm 3.

2. DF(100,0). This is the standard approach for deflation-based truncation; Algorithm 3 parameters
are ȳ = 200, % = 1, ϕ = 0, and Wj+1 =

[
[Yj+1]1 · · · [Yj+1]100

]
in step 28. In step 26, the aug-

menting space is computed by solving Eq. (22) for j ← j+1 and setting Yj+1 ← [Zjg1 · · · Zjg100].

3. POD-A(100,0). This approach employs POD truncation and places augmenting-subspace basis
vectors in the stage-1 basis. Algorithm 3 parameters are ȳ = 200, % = 1, ϕ = 0, Yj+1 =

U
Aj

100

(
Zj ,η

RBF
j (j − j̄)

)
in step 26, and Wj+1 =

[
[Yj+1]1 · · · [Yj+1]100

]
in step 28.

4. POD(5,95). This approach employs POD truncation, places only the dominant POD modes in
the stage-1 basis, and places all post-truncation Krylov vectors in the stage-1 basis. Algorithm 3

parameters are ȳ = 200, % = 1, ϕ = 0, Yj+1 = U
Aj

100

(
Zj ,η

RBF
j (j − j̄)

)
in step 26, and Wj+1 =[

[Yj+1]1 · · · [Yj+1]5
]

in step 28.

5. POD(5,95)it. This approach employs POD truncation, places only the dominant POD modes in
the stage-1 basis, and places all post-truncation Krylov vectors in the stage-1 basis. Algorithm 3

parameters are ȳ = 200, % = 1, ϕ = 1, Yj+1 = U
Aj

100

(
Zj ,η

RBF
j (j − j̄)

)
in step 26, and Wj+1 =[

[Yj+1]1 · · · [Yj+1]5
]

in step 28. Note that ε̄j = 10−2εj .

6. POD-CTC(100,0). This approach employs POD truncation and places augmenting-subspace ba-
sis vectors in the stage-1 basis. Algorithm 3 parameters are ȳ = 200, % = 1, ϕ = 0, Yj+1 =

UCT C
100

(
Zj ,η

RBF
j (j − j̄)

)
in step 26, and Wj+1 =

[
[Yj+1]1 · · · [Yj+1]100

]
in step 28.

7. POD-CTC(5,95). This approach employs POD truncation, places only the dominant POD modes
in the stage-1 basis, and places all post-truncation Krylov vectors in the stage-1 basis. Algorithm

3 parameters are ȳ = 200, % = 1, ϕ = 0, Yj+1 = UCT C
100

(
Zj ,η

RBF
j (j − j̄)

)
in step 26, and Wj+1 =[

[Yj+1]1 · · · [Yj+1]5
]

in step 28.

8. POD(5,95)it. This approach employs POD truncation, places only the dominant POD modes in
the stage-1 basis, and places all post-truncation Krylov vectors in the stage-1 basis. Algorithm 3

parameters are ȳ = 200, % = 1, ϕ = 1, Yj+1 = UCT C
100

(
Zj ,η

RBF
j (j − j̄)

)
in step 26, and Wj+1 =[

[Yj+1]1 · · · [Yj+1]5
]

in step 28. Note that ε̄j = 10−2εj .

To assess the performance of output-oriented POD truncation—which aims to accurately represent
the output quantity of interest—we monitor the error of the solution in the output-oriented norm ||x?

j −
x

(k)
j ||CT C. For the pancake problem, we employ εj = 10−6, while we use εj = 10−3 for the I-beam

problem. During the execution of the stage-3 algorithm, we track the output-oriented error and report
the average number of matrix–vector products, preconditioner applications, and wall time for the error
to satisfy ||x?

j − x
(k)
j ||CT C < τ for a variety of output-oriented tolerance τ .

Figures 10a–10d compare the performances of the assessed methods as a function of the output-
oriented tolerance τ . First, note that Figures 10a–10b show that POD-based truncation methods pro-
duce the lowest wall times for inexact output-oriented tolerances for the pancake problem. These plots
also illustrate the benefit of output-oriented metric over the Aj-metric: Figure 10a shows the superior
performance of the former for modest goal-oriented tolerances, i.e., those between τ = 10−4 and 10−7.
Figure 10b shows that the POD(5,95) methods without the inner iterative method described in Sec-
tion 4.3.1 are faster for inexact goal-oriented tolerances; this occurs because very few stage-3 iterations
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(a) Pancake problem: stage-1 methods only.
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(b) Pancake problem: stage-1 and stage-2 methods.
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(c) I-beam problem: stage-1 methods only.
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(d) I-beam problem: stage-1 and stage-2 methods.

Figure 10: Output-oriented truncation experiments: average number of matrix–vector products, precondi-
tioner applications, and wall time to compute solutions as a function of the goal-oriented tolerance τ .
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Figure 11: Number of stage-3 iterations taken to satisfy an output-oriented tolerance of τ = 10−6 for the
pancake problem as a function of the augmenting-subspace dimension k for radial-basis-function weights
(‘All’), previous weights (‘Recent’), and ideal weights (‘Ideal’).

are required for convergence in the output-oriented norm to these tolerances. In contrast, for stricter
tolerances τ ≤ 10−6, the inner iterative modification (or no compression) yields superior performance.

Figures 10c–10d present results for the I-beam problem. These results illustrate the advantage to
using the output-oriented metric for most values of the goal-oriented tolerance τ , as POD-CTC(100,0)
produces the lowest wall time in Figure 10c and the POD-CTC(5,95)it method produces the lowest wall
time for τ ≤ 10−3.

Finally, we repeat the POD-weights experiments discussed in Section 5.5 for the output-oriented
POD-based truncation method applied to the pancake problem. The experiments measure the number
of stage-3 iterations required to converge to a output-oriented tolerance of τ = 10−6 as a function of
the dimension of the augmenting subspace. We employ a stage-3 tolerance of εj = 10−8 to accrue the
search directions for the first 10 linear systems and subsequently perform truncation using the output-
oriented POD metric with different POD weights. The resulting stage-3 iterations are for the eleventh
linear system. As we observed for the Aj-metric, Figure 11 shows that the ideal weights yield the
best performance, as they minimizing the number of stage-3 iterations required for convergence in the
goal-oriented norm, while the other weighting schemes closely follow the ideal weights.

6 Conclusions

This work has proposed a novel strategy for Krylov-subpace recycling inspired by goal-oriented proper
orthogonal decomposition (POD). We performed analyses that exposes the close connection between
model reduction and Krylov-subspace recycling, proposed specific goal-oriented POD ingredients for
truncating previous Krylov vectors, and developed a new ‘three-stage’ algorithm that employs a hybrid
direct/iterative approach for efficiently solving over the augmenting and Krylov subspaces. Results
on several solid-mechanics problems highlighted the benefits of the new contributions, especially for
capturing specific output quantities of interest to modest tolerances.
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A POD computation

This section describes two techniques for computing a POD basis using given snapshots, weights, and
a pseudometric (see Ref. [4] for additional details). Algorithm 4 describes the first technique, which is
based on the eigenvalue decomposition and is equivalent to the well-known “method of snapshots” [26].
Algorithm 5 reports the second case, which is based on the singular value decomposition (SVD) and is
more appropriate when the symmetric factorization Θ = (Θ1/2)TΘ1/2 is available, where Θ1/2 need not
be upper triangular; this approach leads to a more well-conditioned linear system. Note that Algorithms
4 and 5 produce equivalent POD bases (in exact arithmetic) and differ only in their first two steps.

Algorithm 4 pod evd

Input: snapshot matrix W ∈ Rn×s, weights γ ∈ Rs, pseudometric Θ ∈ SPSD(n), and energy criterion
ε ∈ [0, 1]

Output: POD basis UΘ
y (W, (γ1, . . . , γs))

1: Θ̄ = diag (γ1, . . . , γs) WTΘWdiag (γ1, . . . , γs)
2: Compute symmetric eigenvalue decomposition Θ̄ = VΣ2VT

3: Choose dimension of truncated basis y = mini∈A i with A := {i ∈ N(rank(Θ̄)) | ∑i
k=1 σ

2
k/

∑s
`=1 σ

2
` ≥ ε}

4: UΘ
y (W, (γ1, . . . , γs)) = W

[
1
σ1

v1 . . . 1
σy

vy

]
, where Σ := diag(σ1, . . . , σnw)

Algorithm 5 pod svd

Input: snapshot matrix W ∈ Rn×s, weights γ ∈ Rs, pseudometric factor Θ1/2 such that Θ =
(Θ1/2)TΘ1/2 ∈ SPSD(n), and energy criterion ε ∈ [0, 1]

Output: POD basis UΘ
y (W, (γ1, . . . , γs))

1: W̄ = Θ1/2W
2: Compute thin singular value decomposition W̄ = UΣVT

3: Choose dimension of truncated basis
4: Choose dimension of truncated basis y = mini∈A i with A := {i ∈ N(rank(W̄)) | ∑i

k=1 σ
2
k/

∑s
`=1 σ

2
` ≥ ε}

5: UΘ
y (W, (γ1, . . . , γs)) = W

[
1
σ1

v1 . . . 1
σy

vy

]
, where Σ := diag(σ1, . . . , σnw

)
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